DIFFERENTIAL EFFECTS OF PROSTAGLANDINS ON CANINE INTRAPULMONARY ARTERIES AND VEINS

BURTON M. ALTURA & NARESH CHAND

Department of Physiology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, U.S.A.

- 1 The sensitivity and contractility of isolated canine intrapulmonary arteries and veins to a variety of primary prostaglandin compounds was studied.
- 2 Intrapulmonary arteries produced no measurable contractile responses to prostaglandin A_1 (PGA₁), PGA₂, PGB₁, PGD₂, PGE₁, PGE₂ or to PGF_{1 α}. However, high concentrations of both PGB₂ (> 10^{-7} M) and PGF_{2 α} (> 10^{-6} M) elicited concentrated-related, but weak, contractile responses, measuring only 5–25% of KCl-induced maximum contractions.
- 3 Intrapulmonary arteries, partially contracted by 5-hydroxytryptamine (5-HT), exhibited concentration-related relaxations in response to PGE₁; PGE₂, PGA₁ or PGA₂ produced only weak superimposed confractions.
- 4 In contrast to intrapulmonary arteries, intrapulmonary veins contracted in a concentration-related fashion to all prostaglandins tested, where the contractile sensitivity was (based on EC_{50} s and threshold concentrations): $PGB_2 > PGB_1 > PGD_2 > PGF_{2\alpha} > PGA_2 \gg PGA_1 > PGF_{1\alpha} > PGE_2 > PGE_1$.
- 5 In terms of the ability to generate maximum contractile responses on intrapulmonary veins, the prostaglandins were also variable, with PGA₂ and PGB₂ being the most potent and PGD₂ the least potent.
- 6 Intrapulmonary veins, partially contracted by 5-HT, exhibited concentration-related relaxations to PGE₁ at low concentrations, followed by secondary contractile responses at higher concentrations.
- 7 Neither PGA₁ nor PGA₂ (3.4×10^{-8} to 3.4×10^{-5} M) inhibited or potentiated 5-HT responses of intrapulmonary arteries.
- 8 These data suggest that there are species, regional and major qualitative and quantitative, differences in the responsiveness of intrapulmonary arteries and veins to prostaglandin.

Introduction

Vasoactive lipids, including prostaglandins and a variety of like-acting substances, are known to be synthesized, released and metabolized in mammalian lungs during several pathophysiological conditions (Angaard & Samuelsson, 1965; Lindsey & Wyllie, 1970; Horton, Jones, Thompson & Poyser, 1971; Hamberg & Samuelsson, 1974; Said, Yoshida, Kitamura & Vreim, 1974; Dusting, Moncada & Vane, 1979). The precise role of prostaglandins in the regulation and maintenance of the pulmonary circulation is still poorly understood (Dusting et al. 1979).

Earlier, prostaglandins of the A and E series have been shown to induce relaxations of canine isolated intrapulmonary arteries (Joiner, Kadowitz, Hughes & Hyman, 1975; Kadowitz, Joiner & Hyman, 1975). Recently, in our laboratory, we were unable to demonstrate any relaxant effects of prostaglandins E_1 , E_2 , A_1 or A_2 on isolated pulmonary arteries of the

rat (Chand & Altura, 1980a, b, c). These speciesrelated major qualitative differences in the reactivity of rat and canine pulmonary arteries prompted us to study the effects of primary prostaglandins on isolated intrapulmonary arteries and veins of the dog.

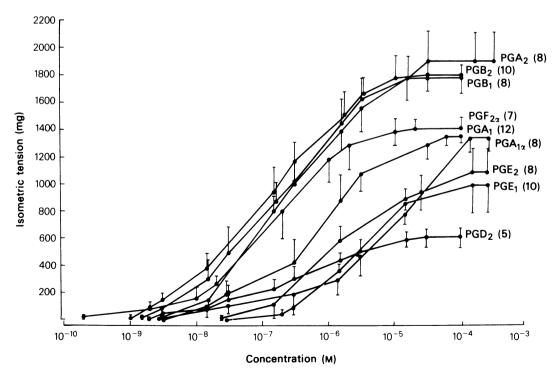
Methods

Animals and vascular preparations

Thirty-five adult dogs of either sex, weighing between 16 to 20 kg, were anaesthetized by intravenous injection of pentobarbitone sodium (Nembutal, 30 mg/kg) and killed by thoracotomy. Lungs were immediately removed and placed in ice-cold oxygenated Krebs-Ringer bicarbonate solution (see composition below). A stainless steel probe of appropriate dia-

meter was inserted into the lumen of the appropriate pulmonary blood vessels. Pulmonary arteries and veins of (2-3 mm o.d.) were then dissected out, and the adjacent lung parenchymal tissue was removed. The pulmonary vessels were cut into helical strips (2.5-3.0 mm in width by 30 mm in length) (Chand & Altura, 1980a-e) and set up isometrically, in vitro. under an optimal resting tension of 2 g (Chand & Altura, 1980a, b). The vascular strips were equilibrated for 2 h in 20 ml isolated tissue baths containing Krebs-Ringer bicarbonate (KRB) solution, the composition of which was (mmol/l): NaCl 118, KCl 4.7, CaCl₂ 2.5, KH₂PO₄ 1.2, MgSO₄.7H₂O 1.2, NaHCO₃ 25.0 and glucose 10.0, as described previously (Altura & Altura, 1970). The KRB solution was continuously oxygenated with a 95% O₂:5% CO₂ mixture and maintained at 37°C (pH 7.4 to 7.5). The loading tensions were maintained and adjusted periodically throughout the experiments. The incubation media were routinely changed every 10-15 min as a precaution against interfering metabolites (Altura & Altura, 1970).

Experimental protocol and statistics


After the 2 h incubation period, complete cumulative concentration-response curves to the prostaglandins

were recorded at 30 to 60 min intervals with Grass FT.03C force-displacement strain gauges and a model 5 Grass Instrument four channel recorder (Altura & Altura, 1970). Dose-response curves to KCl were obtained in all experiments in order to assess reactivity of the prostaglandins.

Relaxant responses to prostaglandin E₁ (PGE₁) and other prostaglandins were recorded from sustained contractions (25 to 50% of maximum response) induced by 5-HT (5-10 ng/ml on the arteries and 10-50 ng/ml on the veins).

The results of the experiments are expressed in mg of developed isometric tension to each prostaglandin and as a percentage of the maximal KCl-induced contractile response.

Cumulative dose-response curves to the prostaglandins were analysed in terms of 'contractility' i.e., intrinsic ability of the vascular smooth muscle strip to generate maximum isometric tensions and 'reactivity', i.e., the ability of each agonist to combine with its receptor as measured by threshold concentration and EC_{50} (effective concentration needed to develop 50% of its maximal response; Altura & Altura, 1970). The means (\pm s.e. mean) of the agonist responses were determined and, where appropriate, statistically analysed by means of Student's unpaired t test.

Figure 1 Comparative contractile concentration-effect curves for primary prostaglandins on canine isolated intrapulmonary veins. Each point indicates the mean and vertical lines show s.e. mean. Number in parentheses represents the number of different dogs examined.

Prostaglandin	n	Threshold conc. (M)	EC ₅₀ (M)	Maximum contractile tension (mg)	% maximum KCl response
PGA ₁	10	Inactive††	_	0	0
PGA ₂	5	Inactive ††		ŏ	ŏ
PGB ₁	5	$3.2 \pm 0.8 \times 10^{-6}$	†	75 ± 30	3 ± 1.2
PGB ₂	5	$2.1 \pm 1.4 \times 10^{-7}$	$1.2 \pm 0.7 \times 10^{-5}$	600 ± 100	25 ± 7
PGD ₂	4	Inactive ††	_	0	0
PGE ₁	5	$2.3 \pm 0.7 \times 10^{-7}$	<u>_</u> †	$-50 \pm -25**$	
PGE,	5	$1.8 \pm 1.1 \times 10^{-6}$	†	250 ± 110	11 ± 5
$PGF_{1\alpha}^{2}$	4	Inactive ††		0	0
PGF ₂ .	5	$0.8 \pm 0.7 \times 10^{-6}$	+	150 ± 139	6 ± 4.5

Table 1 Comparative effects of prostaglandins on canine isolated intrapulmonary arteries

Values are means \pm s.e. means; \dagger not calculable; ** minus sign signifies relaxation below 2 g baseline tension; \dagger no responses were observed up to 5×10^{-5} M.

Chemicals, prostaglandins and solvent

The chemicals used to make up the KRB solutions, as well as potassium chloride, were all A.C.S. certified reagent grade. PGA_1 , A_2 , B_1 , B_2 , D_2 , E_1 , E_2 , $F_{1\alpha}$ and $F_{2\alpha}$ were generous gifts from The Upjohn Company.

All the vasoactive drugs were made up fresh in thrice distilled-deionized water as concentrated stock solutions so that the total volumes added to the 20 ml muscle baths never exceeded 0.65 ml. The prostaglandins were dissolved (< 1 mg/ml) in phosphate buffer (pH 7.4) rather than ethanol, as a precaution against solvent interactions (Altura & Edgarian, 1976).

Results

Sensitivity, expressed in terms of minimum effective concentrations and $EC_{50}s$ as well as contractility (i.e., ability of intrapulmonary arteries and veins to generate maximum contractile tensions), are summarized in Tables 1 and 2, and Figure 1.

It is evident from Table 1, that, in general, intrapulmonary arterial strips are relatively insensitive to prostaglandins of the A, B, E and F series. High concentrations of PGB₂ (i.e., $> 10^{-7}$ M) and PGF_{2 α} (i.e., $> 10^{-6}$ M) induced weak contractile responses, measuring only up to 5 to 25% of KCl-induced maximum responses. Low concentrations of PGF_{2 α} (i.e.,

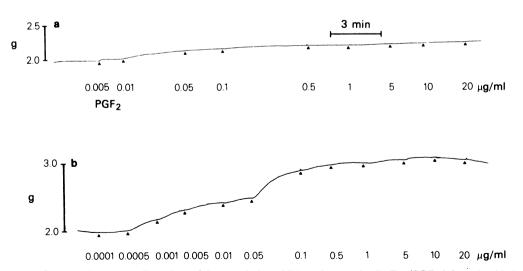


Figure 2 Comparative contractile actions of the cumulative addition of prostaglandin $F_{2\alpha}$ (PGF_{2\alpha}) (µg/ml, added at triangles) on intrapulmonary artery (a) and intrapulmonary vein (b). Bars on left represent induced tension (above 2.0 g baseline) in g. Similar above baseline tension designations are also (except for Figure 4) indicated in the other figures.

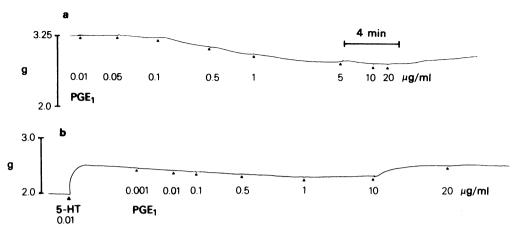


Figure 3 Prostaglandin E_1 (PGE₁ μ g/ml, added at small triangles) induced concentration-dependent relaxations on intrapulmonary artery (a) and intrapulmonary vein (b) partially contracted with 5-hydroxytryptamine (5-HT 0.01 μ g/ml). Note PGE₁-induced contractions at concentrations $> 5 \mu$ g/ml. Bars on left represent tension in g.

 10^{-8} to 10^{-7} M) usually were inactive on pulmonary arteries. However, in one intrapulmonary artery (e.g., Figure 2), such low concentrations of PGF $_{2\alpha}$ did elicit threshold contractile responses.

Pulmonary arterial strips partially contracted with 5-HT reacted with concentration-dependent (10^{-7} to 10^{-5} M) relaxations to only PGE₁ (Table 3, Figures 3 an 4); PGA₁, A₂ and E₂ (10^{-10} to 10^{-6} M) were usually inactive, and high concentrations (5×10^{-6} to 5×10^{-5} M) induced weak, superimposed contractile responses (Figure 5). In some strips (5/15), PGE₂ (10^{-8} to 10^{-6} M) induced weak relaxation (10 to 50 mg lowering of tension) on 5-HT-contracted arterial strips. PGE₁ failed to evoke any consistent (measurable) relaxations on arterial strips under resting (loading) tensions.

veins strips elicited contractile Pulmonary responses to all of the primary prostaglandins tested in a concentration-dependent fashion (Table 2 and Figures 2, 6). The relative order of potency, based on EC_{50} s, was: $PGB_2 > PGB_1 > PGD_2 \cong PGF_{2\alpha} \cong$ $PGA_2 > PGA_1 > PGE_2 \cong PGF_{1\alpha} > PGE_1$, whereas in terms of contractility it was: PGA₂ > PGB₂ \approx $PGB_1 > PGF_{2\alpha} \cong PGA_1 \cong PGF_1 > PGE_2 > PGE_1$ >> PGD₂. Although PGF₂ and PGD₂ were approximately equi-active, at the EC₅₀ level, PGF_{2 α} elicited threshold contractile responses at much lower concentrations and produced greater maximal tensions. It is clear from Figure 6 and Table 3 that PGE₁ (10⁻⁸ to 10^{-6} M) initially induced weak relaxations (50 to 300) mg lowering of tensions) on 5-HT-contracted veins, but evoked contractile responses at higher concentrations (5 \times 10⁻⁶ to 10⁻⁴ M).

Since it has been suggested that PGA_1 and PGA_2 (in non-contractile concentrations) may be able to alter vasoactive agonist-induced contractions

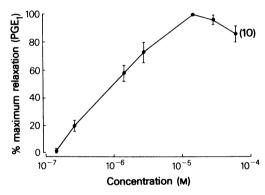


Figure 4 Relaxant concentration-effect curve for canine isolated intrapulmonary arteries. Number in parentheses represents different number of animals examined. Values are given as mean % relaxation; vertical lines show s.e. mean.

(Kadowitz *et al.*, 1975) we performed experiments on vessels from either different dogs to examine such a possibility. Despite the use of a wide concentration range (i.e., 3.4×10^{-8} to 3.4×10^{-5} M) of PGA₁ and PGA₂, we could not detect any potentiation or inhibition of 5-HT contractions on isolated intrapulmonary arteries (e.g., see Figure 7).

Discussion

The data, presented in this study, demonstrate marked, qualitative and quantitative differences in the reactivity of canine intrapulmonary veins and arteries to the vasoactive lipid prostaglandins.

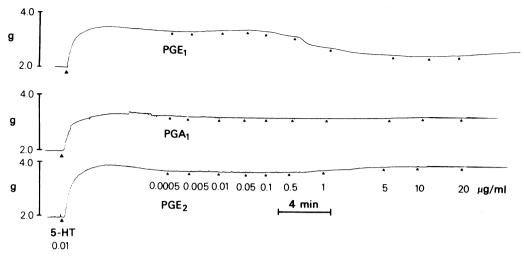
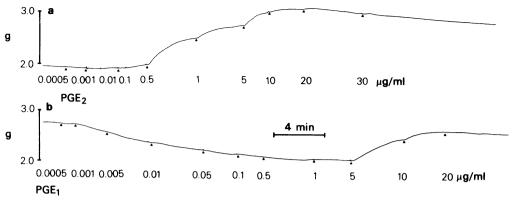


Figure 5 Comparative actions of the cumulative addition of prostaglandin E_1 (PGE₁), PGA₁, and PGE₂ upon intrapulmonary arteries that were partially contracted to 5-hydroxytryptamine (5-HT, 0.01 μ g/ml). Prostaglandins added at small triangles. Note concentration-dependent relaxation upon addition of PGE₁ and failure of either PGA₁ or PGE₂ to induce any relaxation.

Qualitatively, some of our data are consistent with some previous studies in a number of mammalian species, whereas other findings in this paper represent a departure and extension of other work on the canine pulmonary vasculature.

The present studies clearly confirm that primary prostaglandins of the A, B, D and F series contract canine intrapulmonary veins, whereas PGE₁ can relax these venous vessels as well as intrapulmonary arteries (Joiner et al., 1975; Kadowitz et al., 1975; Gruetter, McNamara, Hyman & Kadowitz, 1978; Kadowitz, Spannhake, Levin & Hyman, 1980). Our findings, in contrast to others (Joiner et al., 1975; Kadowitz et al., 1975), indicate that, depending upon concentration, PGE₁ can induce either relaxation or contraction of canine intrapulmonary veins. Others have reported that: (1) PGA₁ and PGA₂ can induce potent relaxation of canine intrapulmonary arteries (Kadowitz et al., 1980), (2) PGE₂ can induce re-


laxation of canine intrapulmonary arteries (Kadowitz et al., 1975), (3) PGB₂ and PGF₂ exert no effects on these arteries (Kadowitz et al., 1975), and (4) PGF₁₀ can induce contraction of canine intrapulmonary arteries (Kadowitz et al., 1975). Our results do not support these findings; i.e., the present data on canine intrapulmonary arteries: (1) fail to demonstrate a relaxant effect for PGA₁ or PGA₂, (2) indicate that PGB_2 and $PGF_{2\alpha}$ can induce contraction,(3) showed no relaxation with PGE₂ and (4) no contraction to $PGF_{1\alpha}$. Moreover, the present results demonstrate that, in terms of ability to evoke a maximal contractile response on canine intrapulmonary veins, PGA₂ is more potent than either PGB₂ or PGB₁ (Table 2), just the reverse of what has been suggested by others (Kadowitz et al., 1975).

We believe several factors could be responsible for these divergent findings: (a) Other investigators (Joiner et al., 1975; Kadowitz et al., 1975; 1980;

Table 2 Comparative sensitivity and contractility of canine isolated intrapulmonary veins to prostaglandins

Prostaglandin	n	Threshold conc. (M)	<i>ЕС</i> ₅₀ (м)	Maximum contractile tension (mg)	% maximum KCl response
PGA_1	12	$9.1 \pm 0.4 \times 10^{-9}$	$9.9 \pm 2.8 \times 10^{-7}$	1375 ± 75	163 ± 11
PGA ₂	8	$3.0 \pm 0.1 \times 10^{-9}$	$4.4 \pm 0.4 \times 10^{-7}$	1925 ± 225	209 ± 24
PGB ₁	8	$2.6 \pm 0.4 \times 10^{-9}$	$2.2 \pm 0.1 \times 10^{-7}$	1805 ± 120	201 ± 9
PGB,	10	$2.2 \pm 0.8 \times 10^{-9}$	$1.5 \pm 0.6 \times 10^{-7}$	1825 ± 150	205 ± 17
PGD_{2}	5	$2.5 \pm 0.2 \times 10^{-9}$	$2.7 \pm 0.5 \times 10^{-7}$	625 ± 75	56 ± 9
PGE ₁	10	$9.4 \pm 0.5 \times 10^{-8}$	$3.5 \pm 0.4 \times 10^{-6}$	1025 ± 225	89 ± 22
PGE ₂	8	$2.2 \pm 0.7 \times 10^{-7}$	$1.6 \pm 0.2 \times 10^{-6}$	1150 ± 175	101 ± 15
$PGF_{1\alpha}$	8	$3.1 \pm 0.5 \times 10^{-9}$	$2.1 \pm 0.6 \times 10^{-6}$	1375 ± 125	159 ± 16
$PGF_{2\alpha}^{1\alpha}$	7	$2.4 \pm 0.3 \times 10^{-10}$	$3.1 \pm 0.6 \times 10^{-7}$	1425 ± 75	171 ± 9

Values are means ± s.e. means.

Figure 6 Differential effects of prostaglandin E_1 (PGE₁) and PGE₂ on canine isolated intrapulmonary veins. PGE₂ (a) was added to relaxed vein (i.e., at baseline tension) whereas PGE₁ (b) was added to a vein that was partially contracted to 5-hydroxytryptamine (0.01 μ g/ml).

Gruetter et al., 1978) used 23.8 mm tris (hydroxymethyl) aminomethane (Tris) as a buffer in their bathing media instead of bicarbonate and phosphate. It has been shown recently that substitution of Tris for the latter natural buffers results in attenuation and inhibition of effects of contractile substances, including prostaglandins on vascular (and pulmonary) smooth muscle (Turlapaty, Altura & Altura, 1978; Altura, Altura, Carella & Turlapaty, 1980; Altura, Carella & Altura, 1980). (b) Our bathing medium contained magnesium ions whereas the previous studies (Joiner et al., 1975; Kadowitz et al., 1975; 1980; Gruetter et al., 1978) used bathing media lacking Mg2+. Removal of Mg2+ from the medium is known to result in loss of contractile activity to some prostaglandins in many vascular (including pulmonary) smooth muscles (Altura & Altura, 1976). (c) We solubilized our prostaglandins in phosphate buffer, whereas other investigators (Joiner et al., 1975; Kadowitz et al., 1975; 1980; Gruetter et al., 1978) used ethanol as a solvent. It has been shown that the low doses of ethanol which are commonly present in the vasoactive concentrations of the prostaglandins used here, and elsewhere (Joiner et al., 1975; Kadowitz et al., 1975; Gruetter et al., 1978) interact with prostaglandins either to inhibit or potentiate the actions of the vasoactive lipids on vascular muscles depending upon the prostaglandin and ethanol dose (Altura & Altura, 1976; Altura & Edgarian, 1976). The use by others (Joiner et al., 1975; Kadowitz et al., 1975; 1980; Gruetter et al., 1978) or artificial buffers and ethanol, together with the failure to include Mg²⁺ in the medium, also may account for the lower sensitivity and contractility of previous investigators' preparations (Kadowitz et al., 1975; Gruetter et al., 1978) to the primary prostaglandins.

In view of the higher sensitivity of canine intrapulmonary veins and rat pulmonary arteries (Chand & Altura, 1980a) to prostaglandins of the B series rather than to any other primary prostaglandin, one should consider that isomerization of the PGAs to PGBs (Jones, Cammock & Horton, 1972) in the pulmonary vasculature may serve as an important *in vivo* humoral regulatory system.

Table 3 Comparison of the sensitivity of canine isolated intrapulmonary arteries and veins, that were partially contracted to 5-hydroxytryptamine, to the relaxant action of prostaglandins

Prostaglandin	n	Threshold conc. (M)	<i>EC</i> ₅₀ (м)	Maximum tension (mg)†
Arteries				
PGA_1	10	$1.1 \pm 1.3 \times 10^{-6}$	**	$250 \pm 60 $ †
PGA_2	5	$1.6 \pm 1.1 \times 10^{-6}$	**	$190 \pm 50 + $
PGE_1^{r}	10	$2.7 \pm 0.5 \times 10^{-7}$	$1.3 \pm 0.3 \times 10^{-6}$	-625 ± -175
PGE_2	4	$0.5 \pm 0.6 \times 10^{-7}$	**	-50 ± -25
Veins				
PGE ₁	5	$1.4 \pm 0.7 \times 10^{-9}$	**	-150 ± -25

Values are means \pm s.e. means; \dagger minus sign signifies relaxation; ** not calculable; \dagger superimposed contractile responses.

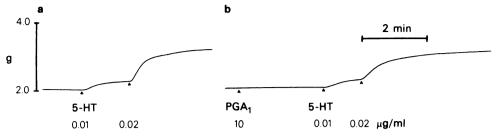


Figure 7 Failure of prostaglandin A_1 (PGA₁) to modify 5-hydroxytryptamine (5-HT)-induced contractile responses of canine isolated intrapulmonary artery. (a) Control contractile responses to 5-HT, 0.01 and 0.02 μ g/ml. (b) Shows that a 3 min preincubation with PGA₁ 10 μ g/ml fails to alter the control contractile response to 5-HT.

Prostaglandins of the D series are the predominant products of arachidonic acid metabolism in homogenates of rat lungs (Nugteren & Hazelhof, 1973). Originally PGD₂ was reported to be biologically inactive (Nugteren & Hazelhof, 1973) but recently, it has been shown to contract bovine isolated pulmonary artery and veins (Gruetter et al., 1978). PGD₂ is virtually inactive on canine intrapulmonary arteries (Gruetter et al., 1978; this study) but as demonstrated here, it induces potent contractions of intrapulmonary veins. The latter effect may be responsible for the increase in pulmonary vascular resistance in intact dogs (Kadowitz et al., 1975; Wassermann, Ducharme, Griffin, DeGraaf & Robinson, 1977; Dusting et al., 1979).

The vascular effects of prostaglandins of the E series are highly variable, depending upon the concentration, species, region, blood vessels, media and spasmogen used to induce tone (Lewis & Eyre, 1972; Burka & Eyre, 1974; Joiner et al., 1975; Kadowitz et al., 1975; 1980; Altura & Altura, 1976; Altura & Edgarian, 1976; Kitamura, Suzuki & Kuriyama, 1976; Chand & Eyre, 1977; Altura et al., 1980b; Chand & Altura, 1980a, c). In this study, PGE₁ but not PGE₂, clearly induced concentration-dependent relaxations on precontracted intrapulmonary arteries of dogs. However, fairly high concentrations of PGE₁ (e.g. $> 10^{-7}$ M) are needed in order to demonstrate these concentration-dependent relaxations. In contrast, neither PGE₁ nor PGE₂ can induce relaxation of rat pulmonary arteries but induce only contractions at relatively higher concentrations (Chand & Altura, 1980a, c). Higher concentrations of PGE₁ induced pulmonary venoconstrictions under resting tensions, following initial, but weak, relaxations on partially 5-HT-contracted veins. In view of the high concentrations required for PGE1-induced pulmonary relaxation, the inconsistency from species to species (Kadowitz et al., 1975; Su & Bevan, 1976; Dusting et al., 1979), and variability from segment to segment of the individual (Somlyo & Somlyo, 1970; Chand & Altura, 1980a; 1980c), together with the rapid pulmonary metabolism of PGE₁ and PGE₂ (Dusting et al., 1979), it is doubtful whether either of

these primary prostaglandins plays an important role in regulating the pulmonary vasculature in either the dog or rat.

As indicated above, our findings with prostaglandins of the F series were not unexpected. PGF₂₋₄ induced only weak contractile responses of canine intrapulmonary arteries, even at extremely high concentrations. These findings are in contrast to the potent pulmonary arterial constrictions demonstrated for the prostaglandins in other mammals (Lewis & Eyre, 1972; Burka & Eyre, 1974; Kadowitz et al., 1975; Altura & Altura, 1976; Chand & Eyre, 1977; Chand & Altura, 1980a, c). However, both PGF₁₀ and PGF₂₀ did produce concentrationrelated, and potent, contractions of intrapulmonary veins, thus extending findings on pulmonary veins of several other mammalian species, noted by others for PGF₂₀ (Lewis & Eyre, 1972; Burka & Eyre, 1974; Joiner et al., 1975; Kadowitz, et al., 1975; 1980; Ketamura et al., 1976; Chand & Eyre, 1977; Gruetter et al., 1978; Dusting et al., 1979). Whether or not such findings are suggestive of a role for PGF's in the pathophysiology of the pulmonary vasculature remains unclear, especially in view of the rapid metabolism of these primary prostaglandins by the lungs (Dusting et al., 1979).

From our results, it seems reasonable to conclude that, as opposed to rat pulmonary arteries (Chand & Altura, 1980a, b, d), canine pulmonary arteries appear to have a paucity of receptors which subserve contraction for primary prostaglandins and prostaglandin endoperoxides. In contrast, rat pulmonary arteries lack receptors for prostaglandins which subserve relaxation (Chand & Altura, 1980a, c). Interestingly, canine pulmonary veins behave similar to rat pulmonary arteries, as far as their contractile responses to prostaglandins are concerned. The species and regional differences in the responsiveness of pulmonary blood vessels to prostaglandins suggest that extrapolation of data from one species to another, or from one segment, or region, to another is extremely difficult, if not impossible.

We are tempted to conclude, from the results of the present study, that there are remarkable qualitative

and quantitative differences in the reactivity of pulmonary veins and arteries to prostaglandins within a single species. Such differential reactivity may be a reflection of their differential role(s) in the pathogenesis of pulmonary vascular diseases (e.g. hypoxic pulmonary vasoconstriction, pulmonary hypertension and oedema), as has recently been suggested by others (Dusting *et al.*, 1979).

We thank Dr J. Pike, Upjohn Company, Kalamazoo, U.S.A., for the generous gifts of prostaglandins. This work was supported in part by Research Grants HL 18015 and DA 02339 from the U.S.P.H.S.

References

- ALTURA, B.M. & ALTURA, B.T. (1970). Differential effects of substrate depletion on drug-induced contractions of rabbit aorta. *Am. J. Physiol.*, **219**, 1698–1705.
- ALTURA, B.M. & ALTURA B.T. (1976). Vascular smooth muscle prostaglandins. *Fedn Proc.* **35**, 2360–2366.
- ALTURA, B.M., ALTURA, B.T., CARELLA, A. & TURLAPATY, P.D.M.V. (1980a). Adverse effects of artificial buffers on contractile responses of arterial and venous smooth muscle. Br. J. Pharmac., 69, 207–214.
- ALTURA, B.M., CARELLA, A. & ALTURA, B.T. (1980b). Adverse effects of Tris. HEPES and MOPS buffers on contractile responses of arterial and venous smooth muscle induced by prostaglandins. *Prostaglandins and Med.*, 5, 123–130.
- ALTURA, B.M. & EDGARIAN, H. (1976). Ethanol-prostaglandin interactions in contraction of vascular smooth muscle. *Proc. Soc. Exp. Biol. Med.*, 152, 334–337.
- ANGGARD, E. & SAMUELSSON, B. (1965). Biosynthesis of prostaglandins from archidonic acid in guinea pig lungs. *J. biol. Chem.*, **240**, 3518–3521.
- BURKA, J.F. & EYRE, P. (1974). Studies of prostaglandins and prostaglandin antagonists on bovine pulmonary vein in vitro. *Prostaglandins*, **6**, 333–343.
- CHAND, N. & ALTURA, B.M. (1980a). Reactivity of isolated rat and canine pulmonary arteries to prostaglandins. *Prostaglandins and Med.*, 5, 59-67.
- CHAND, N. & ALTURA, B.M. (1980b). Occurrence of inhibitory histamine H₂-receptors in isolated pulmonary blood vessels of dogs and rats. *Experientia*, **36**, 1186–1187.
- CHAND, N. & ALTURA, B.M. (1980c). Reactivity and contractility of rat pulmonary arteries to vasoactive agents. J. appl. Physiol., 49, 1016–1022.
- CHAND, N. & ALTURA, B.M. (1980d). Reactivity of isolated rat and canine pulmonary blood vessels to synthetic endoperoxide (PGH₂) analogs. *Prostaglandins and Med.* 5, 469–476.
- CHAND, B. & ALTURA, B.M. (1980e). Serotonin receptors subserve only contraction in canine and rat pulmonary arteries and veins. Artery, 7, 232–2245.
- CHAND, N. & EYRE, P. (1977). Autacoid and anaphylactic reactivity of pulmonary and hepatic smooth musculature of the cat. *Eur. J. Pharmac.*, **45**, 213–220.
- DUSTING, G.J., MONCADA, S. & VANE, J.R. (1979). Prostaglandins, their intermediates and precursors: Cardiovascular actions and regulatory roles in normal and abnormal circulatory systems. *Progr. Cardiovascular Dis.*, 21, 405–430.

- GRUETTER, C.A., McNAMARA, D.B., HYMAN, A.L. & KADOWITZ, P.J. (1978). Contractile effects of a PGH₂ analog and PGD₂ on intrapulmonary vessels. *Am. J. Physiol.*, **234**, H139–H145.
- HAMBERG, M. & SAMUELSSON, B. (1974). Prostaglandin endoperoxides. VII. Novel transformations of arachidonic acids in guinea pig lung. *Biochem. biophys. Res. Comm.*, **61**, 942–949.
- HORTON, E., JONES, R., THOMPSON, C. & POYSER, N. (1971). Release of prostaglandins. *Ann. N.Y. Acad. Sci.*, **180**, 351–362.
- JOINER, P.D., KADOWITZ, P.J., HUGHES, J.P. & HYMAN. A.L. (1975). Actions of prostaglandins E_1 and $F_{2\alpha}$ on isolated intrapulmonary vascular smooth muscle. *Proc. Soc. exp. Biol. Med.*, **150**, 414–421.
- JONES, R.L., CAMMOCK, S. & HORTON, E.W. (1972).
 Partial purification and properties of cat plasma prostaglandin A isomerase. *Biochim. biophys. Acta*, 280, 588–601.
- KADOWITZ, P.J., JOINER, P.D. & HYMAN, A.L. (1975). Physiological and pharmacological roles of prostaglandins. A. Rev. Pharmac., 15, 285–306.
- KADOWITZ, P.J., SPANNHAKE, E.W., LEVIN, J.L. & HYMAN, A.L. (1980). Differential actions of the prostaglandins on the pulmonary vascular bed. In *Advances in Prostaglandin and Thromboxane Research*, Vol. 7, ed Samuelsson, B, Ramwell, P.W. & Paoletti, E., pp. 731–744, New York: Raven Press.
- KITAMURA, H., SUZUKI, H. & KURIYAMA, H. (1976). Prostaglandin action on the main pulmonary artery and portal vein of the rabbit. *Jap. J. Physiol.*, **26**, 681–692.
- LEWIS, A.J. & EYRE, P. (1974). Some cardiovascular and respiratory effects of prostaglandins E_1 , E_2 and $F_{2\alpha}$ in the calf. *Prostaglandins*, 2, 55–64.
- LINDSEY, H.E. & WYLLIE, J.H. (1970). Release of prostaglandins from embolized lungs. *Br. J. Surg.*, **57**, 738–741.
- NUGTEREN, D.H. & NAZELHOF, E. (1973). Isolation and properties of intermediates in prostaglandin biosynthesis. *Biochim. biophys. Acta*, **326**, 448–461.
- SAID, S.I., YOSHIDA, T., KITAMURA, S. & VREIM, C. (1974). Pulmonary alveolar hypoxia: Release of prostaglandins and other humoral mediators. *Science*, 185, 1181–1183.
- SOMLYO, A.P. & SOMLYO, A.V. (1970). Vascular smooth muscle II. Pharmacology of normal and hypertensive vessels. *Pharmac. Rev.*, **22**, 249–353.
- SU, C. & BEVAN, J.A. (1976). Pharmacology of pulmonary blood vessels. *Pharmac. Ther. B.*, 2, 275–288.

TURLAPATY, P.D.M.V., ALTURA, B.T. & ALTURA, B.M. (1978). Influence of Tris on contractile responses of isolated rat aorta and portal vein. *Am. J. Physiol.*, 235, H208–H213.

WASSERMAN, M.A., DUCHARME, D.W., GRIFFIN, R.L., DeGRAAF & ROBINSON, F.G. (1977). Bronchiopulmonary and cardiovascular effects of prostaglandin D_2 in the dog. *Prostaglandins*, 13, 255–269.

(Received August 4, 1980. Revised January 23, 1981.)